(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
r(xs, ys, zs, nil) → xs
r(xs, nil, zs, cons(w, ws)) → r(xs, xs, cons(succ(zero), zs), ws)
r(xs, cons(y, ys), nil, cons(w, ws)) → r(xs, xs, cons(succ(zero), nil), ws)
r(xs, cons(y, ys), cons(z, zs), cons(w, ws)) → r(ys, cons(y, ys), zs, cons(succ(zero), cons(w, ws)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(z0, z1, z2, nil) → z0
r(z0, nil, z1, cons(z2, z3)) → r(z0, z0, cons(succ(zero), z1), z3)
r(z0, cons(z1, z2), nil, cons(z3, z4)) → r(z0, z0, cons(succ(zero), nil), z4)
r(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → r(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6)))
Tuples:
R(z0, z1, z2, nil) → c
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
S tuples:
R(z0, z1, z2, nil) → c
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
K tuples:none
Defined Rule Symbols:
r
Defined Pair Symbols:
R
Compound Symbols:
c, c1, c2, c3
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
R(z0, z1, z2, nil) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(z0, z1, z2, nil) → z0
r(z0, nil, z1, cons(z2, z3)) → r(z0, z0, cons(succ(zero), z1), z3)
r(z0, cons(z1, z2), nil, cons(z3, z4)) → r(z0, z0, cons(succ(zero), nil), z4)
r(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → r(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6)))
Tuples:
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
S tuples:
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
K tuples:none
Defined Rule Symbols:
r
Defined Pair Symbols:
R
Compound Symbols:
c1, c2, c3
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
r(z0, z1, z2, nil) → z0
r(z0, nil, z1, cons(z2, z3)) → r(z0, z0, cons(succ(zero), z1), z3)
r(z0, cons(z1, z2), nil, cons(z3, z4)) → r(z0, z0, cons(succ(zero), nil), z4)
r(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → r(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
S tuples:
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
R
Compound Symbols:
c1, c2, c3
(7) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
R(
z0,
nil,
z1,
cons(
z2,
z3)) →
c1(
R(
z0,
z0,
cons(
succ(
zero),
z1),
z3)) by
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
S tuples:
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
R
Compound Symbols:
c2, c3, c1
(9) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
R(
z0,
cons(
z1,
z2),
nil,
cons(
z3,
z4)) →
c2(
R(
z0,
z0,
cons(
succ(
zero),
nil),
z4)) by
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
S tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
R
Compound Symbols:
c3, c1, c2
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
We considered the (Usable) Rules:none
And the Tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(R(x1, x2, x3, x4)) = [2]x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(cons(x1, x2)) = [2] + x2
POL(nil) = 0
POL(succ(x1)) = 0
POL(zero) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
S tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
K tuples:
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
Defined Rule Symbols:none
Defined Pair Symbols:
R
Compound Symbols:
c3, c1, c2
(13) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
S tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
K tuples:
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
Defined Rule Symbols:none
Defined Pair Symbols:
R
Compound Symbols:
c3, c1, c2
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
We considered the (Usable) Rules:none
And the Tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(R(x1, x2, x3, x4)) = x1 + [2]x2 + x2·x4 + [2]x2·x3 + [2]x22
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(cons(x1, x2)) = [2] + x2
POL(nil) = 0
POL(succ(x1)) = 0
POL(zero) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
S tuples:
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
K tuples:
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
Defined Rule Symbols:none
Defined Pair Symbols:
R
Compound Symbols:
c3, c1, c2
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
We considered the (Usable) Rules:none
And the Tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(R(x1, x2, x3, x4)) = x1 + x4 + x2·x3 + [2]x22
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(cons(x1, x2)) = [1] + x2
POL(nil) = 0
POL(succ(x1)) = [1]
POL(zero) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
S tuples:none
K tuples:
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
R(nil, nil, cons(succ(zero), nil), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), nil)), z3))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, cons(succ(zero), x1), cons(z2, z3)) → c1(R(nil, nil, cons(succ(zero), cons(succ(zero), x1)), z3))
Defined Rule Symbols:none
Defined Pair Symbols:
R
Compound Symbols:
c3, c1, c2
(19) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(20) BOUNDS(1, 1)